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S, ,mmary  

The characterization of polymer orientation is discussed by expanding the 
orientation distribution function (ODF) for the crystalline phase into a series of 
general ized spherical harmonics (GSH) or into a series of symmetric  
generalized spherical harmonics (SGSH). A transformation relation is derived 
between the two expansions. By means of this transformation the orientation 
factors (moments of the ODF) can be calculated from the SGSH series 
expansion coefficients. As an example, this transformation is demonstrated for 
crystals of hexagonal symmetry and fiber texture. 

Introduction 

The anisotropic properties of a polycrystalline material  are related to the 
orientation distribution function (ODF) of the crystallites [1]. For partially 
crystalline polymers, the amorpous orientation can be described independently 
from the orientation of the crystallites [1]. In this paper we consider only the 
crystalline orientation. 

The mater ia l  properties of an anisotropic sample measured in different 
directions are functions of only a few statistical averages (or moments) of the 
ODF which are called orientation factors. The connection between the ODF and 
the anisotropic mater ia l  properties was t rea ted  previously by Roe and 
Krigbaum [2]-[3] and by Nomura and Kawai [4]. These authors made use of a 
series expansion and interrelated the coefficients of this expansion to the 
orientation factors. Another slightly different series expansion was developed 
independently by Bunge [5], [6] taking into account the crystal structure (crystal 
symmetry) and the sample orientation (sample texture). I t  is the purpose of 
this paper to express the orientation factors by the coefficients of the Bunge ODF 
series. 

* To whom correspondence should be addressed 
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The orientation factors can be determined from X-ray measurements by several 
ways: 
(a) - direct integration of the weighted scattering intensities over the orientation 
angles [7]-[9]. This procedure results in low order orientation factors only. 
(b) -measurement of the pole figure intensities, from which the coefficients of 
the ODF series can be determined [2]-[4]. The relation between the ODF series 
and the orientation factors is the subject of this paper. 

The pole figures are defined as stereographic projections of the plane normal 
vectors of a crystal lattice [8]-[9]. A pole figure is measured at a fix Bragg angle 
by varying the sample position relative to the incident X-ray beam by using 4 
axes texture goniometers [8]-[10]. For the determination of the ODF series 
expansion coefficients a certain number of complete pole figures have to be 
measured.  

The determination of the ODF series expansion coefficients from pole figures is 
routine for metals, commercially available as ODF software TEXl l /ODFl l  
developed by Siemens AG [10]. This software makes use of the ODF series 
expansion method of Bunge [5], [6] for cubic and hexagonal symmetry classes. 
The application of this software for polymers is limited, because they mostly 
belong to crystal classes with lower symmetry. Polyoxy-methylene (POM) is the 
only mass polymer which possesses a hexagonal crystal symmetry [8]. 

Series Extmnsion for the Orientation Distribution Function 

The probability of finding a structural element (i.e. elementary cell) in the 
dOd~gd9 angular range can be given by the orientation distribution function 
w(O,W,9). This probability is equal to w(O,xg,~0)dOsingd~gd9 where ~, ~g and ~ are 
the Euler angles of the structural element with respect to the laboratory frame 
[6], [11]. We note, tha t  the Euler angles in the two different ODF series 
discussed here, are defined in different ways [6]. 

ODF Series Expansion by Roe and Krigbaum 

The ODF can be expanded in a series of generalized spherical harmonics [1]- 
[3], [9]: 

w(O3g, tp) = E E E WlmnZlmn(x)e'imVe-in~ 
1=0 m=-I n=-I 

(1) 

with x = cos 0 and with the normalization condition 
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2x 2x x 

0 
w(9,~/,~)sin@d~d~/d~0 = 1 (2) 

Wrandom = 1/(8~ 2) 

where  the  functions Zlmn(X) have the  following form: 

]1 2 m-n m+n ,_.(m-n,m+n), , 
21+1 (1-m)!(l+m)! / (1/2)m(1.x) 2 ( l+x) 2 ~'l m ~x) (3) Zlmn(X) = 2 (1-n)!(l+n)! 

The explicit  expression for the Psa'~)(x) ~ Jacobi polynomials  will be shown later ,  
the  var iables  @, ~ and ~ correspond to the  Eu le r  angles as defined by Margenau  
and  Murphy  [11]. 

The Wlmn ODF coefficients can be separa ted  into a real  and an  imag ina ry  par t  
[4]: 

Wlmn = almn + iblmn 

The  Wlmn ODF coefficients are explicitely the lmn- th  orders  of the  moment s  of 
the  ODF function.  Due to specific s y m m e t r y  p roper t i es  wi th  respec t  to the  
sample  t ex tu re  and  the  crystal  system, some of the expans ion  coefficients in 
eq. (1) are  zero and some are  equal.  Concerning the details ,  we refer  to the 
l i t e ra tu re  [3]. 

As stat is t ical  averages  of  the ODF (labelled with < >), the  or ienta t ion factors are  
expressed in t e rms  of  s inna and cosna. Here  a is equivalent  to e i ther  9, or ~ or 

and  n is a positive integer .  The Wlmn coefficients of the  ODF expans ion  by 
Roe resu l t  direct ly  in the  flmn or ienta t ion factors: 

21+1 (l+m)!(l+n)! ]1/2 
i~mn = 4x2 2 (1-m)I(1-n)! Wlmn (4) 

Since the  i m a g i n a r y  component  of  Wlmn vanishes  for prac t ica l  cases i.e. for 
t e x t u r e  wi th  biaxial  or un iax ia l  s y m m e t r y  [4], explici t  express ions  for some 
or ienta t ion  factors (as l is ted below) contain only the real  par t ,  almn: 

f200 = (2/5)l/24x2a200 = (1/2)(3{cos29} -1) (5) 

f220 = (12/151/2)4~2a220 = 3{sin2@cos2~} (6) 

f202 = (12f151/2)4x2a202 = 3<sin2~cos2~) (7) 
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f4oo = (21/2/3)4~2a40o = (35(cos49)-30(cos29)+3)/8 (8) 

f420 = 801/24~2a420 = (15/2)((7cos20-1)s in2~3cos2~)  (9) 

f440 = 16(35)1/24~2a440 = 105(sin4t~cos4~g) (10) 

In addi t ion  to the  X-ray procedure,  there  are other  well es tabl ished 
exper imen ta l  me thods  to de te rmine  individual  or ienta t ion  factors. For 
example, f200 corresponds to the so-called Hermann 's  orientat ion parameter  
which describes e.g. the optical anisotropy of samples  wi th  cylindical 
symmetry [1]. Stein used the f220 coefficients for biaxially oriented polymers for 
the  descript ion of dichroitic propert ies [1]. The character izat ion of the 
anistropy of the elastic stiffness tensor needs information about the fourth 
order moments  (see e.g. [12]). NMR methods result  in orientation factors up to 
the eighth order [1]. Only wide X-ray diffraction gives in principle every order 
of the moments  [1]. 

O D F  Ser i e s  E x p a n s i o n  b y  B t m g e  

According to Bunge [6], the ODF is defined slightly different from w(t~,W,~) and 
denoted by f(~ol,r where the Euler  angles r162 differ from 9,W,tp. The  
Bunge series expansion is written as 

1 1 mn f(q~,O,~)= Z Z Z q m n T 1  (91,r (11) 
1=0 m=-I n=-I 

with the normalization condition (12) 

2~ 2~ x 

f f f ffCpl,*,cp2)sincPcl*d~ldcp2 = 8~ 2 
0 0 0 

(12) 

f random - 1 

where the spherical harmonics T1 mn (r162 are defined as follows: 

W 1 n (q~l,r = eim~2e in~l ('l)l'm(i)n-m21(1-m)! [ (l+m)!(l-n)!(l'm)!(l+n)! ]1/2 

n-m n+lTl 

�9 (1-cosr 2 (l+coscP)'--2-- 
d | - n  

d(cosr n [(1-c~162176162 (13) 
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The two sets of Euler angles are interrelated: 

q~ = ~ + x / 2  r = 9 q)2 = q)- ~/2 

The two ODF functions are simply related [6]: 

1 
w(9,~,(p) = ~ 2  f((Pl,(I),(P2 ) (14) 

Taking into account certain symmetry conditions, Bunge developed an expan- 
�9 . m n  

slon m a series using l inear combinations of the T 1 functions. These 
combinations are called symmetrical generalized spherical harmonics, SGSH 
[5], [6]. The coefficients for the linear combinations are selected such that  both 
the crystallographic symmetry and the sample texture symmetry are taken 
into account. The SGSG series expansion by Bunge has the general form: 

oo M ( 1 )  N ( 1 )  

1=0 ~=1 v=l 

The number of independent spherical harmonics, - N(1) for the texture and M(1) 
for the crystall symmetry - are given for various 1 in the literature [6]. The dots 
over T mean that  in the series expansion only the symmetric generalized sphe- 
rical harmonics are kept, which are linear combinations of the non-symmetric 
T~ n generalized spherical harmonics: 

�9 1 

m=-I n=-I 
(16) 

The symmetry operations S defined by the crystal structure and by the texture 
leave the "dotted" spherical harmonics invariant: 

. '~ "_�9 

T (S(~01,~,q>2)) = T (q~,~,q~2) (17) 

�9 n v  

The coefficients B 1 g in eq. (16) express the crystal symmetry and A 1 has to 
be selected according to the texture symmetry. The values of these coefficients 
have been summarized by Bunge [6] in tables for different cases. 

The advantage of the Bunge series expansion (15) is that,  for a given error, 
fewer terms are required than  for the expansion (1). Unfortunately, a direct 
physical interpretation of the expansion coefficients C by the orientation factors 
is not possible. 
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Transformation of  ODF Coefficients of  the Bunge Expansion to 
Orientiation Factors 

For  the  ma thema t i ca l  t ransformat ion ,  we make  use of the Jacobi  polynomials  
in the differential  descript ion as defined by Ger fand  and Shapiro [13]: 

p~a,p) (~) (-1)s d s 
= ~ (1-~) -a (1+~)0 ~ [(1-~)s+a(l+~)s+l ~] (18) 

with the  subst i tu t ion ~ = cos(I). 

1 
Let  us subst i tute  in eq. (18) s = l - ~ ( I m+nl  + I m-n I ), a = I n-m I, ~ = I m+n I 
and  mul t ip ly  wi th  

K(~)=  ( 1 ) m  (l+m)!(1-m)l 
(l+n)!(1-n)! 

In-ml In+ml 
(1-~1 2 (1+~1 2 (19) 

As a resul t ,  we obtain the individual  t e rms  of the series expansions,  on the lefL- 
ha nd  side the t e rms  of Roe and on the  r ight -hand side the t e rms  of  Bunge. I t  
follows from this relation, t ha t  the the expansion coefficients for the  GSH series 
can be wr i t t en  as 

(21_~_) 1 nv(1) AI mnv mv in'm ~ Z C1 (20) W l m n -  8x 2 
v=l 

The  above re la t ion  gives a direct  t r ans fo rma t ion  be tween  the coefficients of 
Bunge  (measurab le  wi th  the S IEMENS T E X l l / O D F l l  system) and the  coeffi- 
cients of  Roe. The t r ans fo rmat ion  coefficients A 1 tony should be calculated for 
the  d i f f e ren t  c rys ta l  sys tems  and  t ex tu r e  symmet r i e s .  For  the  hexagona l  
crys ta l  sys tem and  fiber t ex tu re  they  have  the following form (see [6], Table 
14.4): 

A~ nnv = 1(-1)] v = 1 (21.a) 

1 
A~nv = (II~ (-1)I ~6(v.l),m v > 1 (21.b) 

where 8i, k is the Kronecker symbol with the value I or 0. The orientation factors 
flrnn can be obtained with the eq. (20), by a substitution ot the coefficients Wlm n 
into the equation (4). As an illustration, the Hermann orientation factor for a 
specimen with fiber texture and hexagonal crystals has the form: 
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1 
1._~_ (" 2 ~ 1 00 

w200 = 8=2L5 ) .~ .c2  

1 
1 

f200 = ~ (3(cos29) -1) = 4x 2 W200 

(22) 

In a forthcoming paper, we give the orientation factors determined from X-ray 
scattering data for POM with fiber texture. 
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